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1 Introduction

Since a few years, the braneworld idea put forward already in the eighties [1, 2] has made

a spectacular comeback becoming a vital ingredient of higher-dimensional theories. In

essence, the idea is that by confining the Standard Model fields on a brane, a hypersurface

embedded in a higher-dimensional space-time, one can obtain a low energy theory which

looks four-dimensional without the need to compactify the extra dimensions.

In the original scenarios, branes are modelled as defects of a higher-dimensional field

theory, domain walls [1] or strings [2]. Light modes of the higher-dimensional fields, lo-

calized on the defect, are interpreted as four-dimensional particles. Using these scenarios,

one can naturally build theories with scalars and fermions living on the defect - e.g. in [1]

fermions were incorporated through Yukawa interaction with the scalar creating the do-

main wall. Localization of gauge fields is, however, rather problematic (especially for the
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non-abelian fields, because of the difficulty to achieve charge universality), although some

ideas towards the resolution of this problem have been pursued in [3].

The recent revival of the braneworld idea was stimulated by new achievements within

the string theory, in particular the discovery [4] of Dirichlet branes (or D-branes), solitons

of the string theory on which open strings can end and which have the property of local-

izing gauge fields (as well as fermions and bosons interacting with them). It has also been

realized that gravity can be incorporated into the braneworld picture, along one of two

alternative approaches: The first idea, put forward in the ADD models [5, 6], was sim-

ply to use compactification to make gravity four-dimensional (at distances exceeding the

compactification scale), but under the assumption that only gravity can probe the extra

dimensions, all the Standard Model fields being confined on a brane by some mechanism

or other. The advantage, compared to the classic Kaluza-Klein picture, was to allow for

much bigger size of the extra dimensions, as it was only constrained by the small-distance

Newton’s law experiments. In this scenario the gravitational backreaction of the brane

on the bulk geometry is supposed to be negligible. The second approach, put forward in

the RS models [7, 8], is to trap gravity itself on a brane through warping of space-time.

Indeed, it was shown in [7, 8] that when a brane is embedded in a five-dimensional anti-de

Sitter space-time, the spectrum of excitations of the five-dimensional graviton contains a

localized zero mode, which can be seen as a four-dimensional graviton.

Infinitely thin branes appearing in the RS or ADD models can be thought as approxi-

mations of smooth structures, thick branes, defects of some higher-dimensional field theory.

Several regularized versions of the non-compact RS2 model have been constructed [9–12],

along very much the same lines as in [1], using smooth gravitating domain walls to gen-

erate warped geometry. As for the ADD models, their physics has been studied using an

effective description of the brane and its four-dimensional field theory (without actually

dealing with the question of how the brane appears). This approach, motivated by the

lack of a truly realistic model within which the Standard Model would be localized on a

brane (or several branes) — be it field-theoretical model or string theory model1 — has

been developped in [13]. It relies on the four- and five-dimensional covariance principles

to construct the action for a field theory on a thin brane, with Nambu-Goto [16] action

as a foundation. This approach proved to be a very powerful tool to study the physics of

excitations of the ADD-type models, the spectrum of which contains besides the Kaluza-

Klein gravitons, also brane’s own excitations: exotic scalar particles called branons [17, 18].

Branons can be interpreted as Goldstone bosons appearing as a result of breaking of the

isometries of the extra space by the presence of the brane. It was shown [19] that when the

brane tension in much smaller than the fundamental scale of gravity, massive Kaluza-Klein

modes decouple from the branons, allowing (at least in principle) a low-energy description

of the dynamics of these particles. It has been argued [18] that when the isometries being

broken are not exact, branons get a mass. Massive branons has been advocated as dark

matter candidates [20, 21], as they are supposed to be stable and interact very weakly with

1Note that an impressive progress has been made in the recent years in constructing semi-realistic

intersecting D-brane models, see e.g. the reviews [14, 15] and the references therein.
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the Standard Model fields. It was suggested [22, 23] that they could be observed in collider

experiments (see [24, 25] for LEP limits).

The aim of the present work is to determine the four-dimensional low energy effective

field theory on a brane in an explicit five-dimensional model and to verify how close it is

to the Nambu-Goto action. Our main goal is to investigate the form and the strength of

branon interactions. We do not aspire to present a realistic braneworld scenario and for

the sake of simplicity, our study will be based on a very basic setup, where the brane is

modelled as a domain wall in a five-dimensional Minkowski space-time and is populated

only by a light scalar field and a massless branon. We will ignore the issue of producing

four-dimensional gravity, which could either appear as induced gravity [26, 27] or produced

through compactification of extra dimension(s), and concentrate on the interactions of the

scalar with the branon excitation. Given that both fields are localized on the brane and in

view of the results of [19], we do not expect their interactions to be influenced by the size

of the extra dimensions.

The paper is organized as follows: in section 2, we briefly remind the Nambu-Goto

description of a brane. In section 3, we present the five-dimensional domain wall model

with two scalars and determine its spectrum of excitations. Section 4 is devoted to the

calculation of the four-dimensional low energy effective action for this model and its com-

parison with the Nambu-Goto action. In section 5 we discuss physical implications of the

additional branon interaction appearing in our action.

2 Nambu-Goto action for the brane

The effective action for the field theory on a thin brane was constructed, by symmetry

considerations, in [13]. Let us remind briefly this approach in order to set up the notations

and to facilitate the analysis of our results.

Let us consider a thin brane embedded in a five-dimensional bulk which we will take to

be a Minkowski space-time — a simplifying assumption, which is justified in the absence

of any other fields in the bulk and when the brane tension τ is small compared to the

fundamental gravity scale, τ ≪ M4
P , so that we can neglect the backreaction of the brane

on the bulk geometry. Let us denote the bulk coordinates as XM , M = 0, . . . , 4 and let the

internal coordinates on the brane be xµ , µ = 0, . . . , 3. The brane is then a hypersurface

which can be described through parametric equations XM = Y M (x). If we choose the

gauge Y µ(x) = xµ, µ = 0, . . . , 3, the induced metric reads:2

gµν = ∂µY M∂νY
NηMN = ηµν − ∂µY ∂νY , (2.1)

where Y (x) = Y 4(x) denotes the position of the fluctuating brane in the bulk. From the

four-dimensional point of view, Y (x) is a dynamical massless scalar field, a so-called branon:

Goldstone boson appearing as a consequence of the breaking of translation symmetry along

the extra dimension by the presence of the brane.

2We use the “mostly minus” convention for the signature of the metric, that is ηMN =

diag(1,−1,−1,−1,−1).
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The prescription for constructing the effective action describing a four-dimensional

field theory on the brane is that it should obey the five-dimensional covariance, as well as

be invariant under four-dimensional coordinate transformations. As a result, the effective

action is basically the usual action for a matter field in a curved space-time (the metric of

which is the induced metric gµν). In particular, supposing that the only matter field on

the brane is a scalar v1 with a potential V (v1) = m̃2
1v

2
1/2 + λ4v

4
1/4 (which is the case we

will be concerned with in what follows), the brane action reads:

Sscalar
NG =

∫

d4x
√

g{−τ + Lscalar} =

∫

d4x
√

g

{

−τ +
1

2
gµν∂µv1∂µv1 − V (v1)

}

. (2.2)

The leading constant term in the action is the Nambu-Goto term, τ being the brane tension.

As it is transparent from (2.2), branons interact with the matter fields localized on the brane

only through the induced metric - their interactions are therefore only derivative.3 These

interactions can be seen more explicitly in the low energy expansion:

Sscalar
NG =

∫

d4x

{

−τ +
1

2
∂µỸ ∂µỸ +

1

8τ

(

∂µỸ ∂µỸ
)2

+
1

2
∂µv1∂µv1 −

1

2
m̃2

1v
2
1 − λ4

4
v4
1

+
1

2τ
∂µỸ ∂ν Ỹ ∂µv1∂νv1 −

1

4τ
∂µỸ ∂µỸ

[

∂αv1∂αv1 − m̃2
1v

2
1

]

+ . . .

}

, (2.3)

where we have rescaled Y (x), introducing:

Ỹ (x) ≡
√

τY (x)

which carries the mass dimension of a four-dimensional scalar field, and used:

gµν = ηµν +
1

2τ
∂µỸ ∂ν Ỹ + . . .

and √
g = 1 − 1

2τ
ηµν∂µỸ ∂ν Ỹ − 1

8τ2

(

∂µỸ ∂ν Ỹ
)2

+ . . .

Our goal will be to determine the effective action in a domain wall model containing

two scalar fields and to verify how close this action is to the action (2.2), to which we will

from now on loosely refer as to the Nambu-Goto action.

Depending on the accuracy of the calculations, we might expect in our action correc-

tions coming from the finite width of the domain wall. Such corrections to the Nambu-Goto

action were investigated in [28–30] using Gauss-Coddazzi formalism and were found to be

proportional to the brane’s curvature (both intrinsic and extrinsic). More explicitly, it was

found in [30] that for the case of the λΦ4 domain-wall model, the action of the brane reads

(in the absence of matter on the brane):

Sbrane =

∫

d4x
√

g

{

−τ

[

1 +
π2 − 6

24a2
R − 1

3a2
K2

]

+ O
(

1

a4

)}

, (2.4)

where R denotes the curvature scalar and K the extrinsic curvature of the brane and a−1

is the width of the domain wall.
3When gauge fields are present, branons can also have interactions of other type, see [17].
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3 Setup: two-field domain wall

As an explicit field-theoretical (toy) model of a braneworld, we will use a five-dimensional

domain wall model with two scalar fields, described by the following action:4

S =

∫

d4xdy

[

1

2
ηMN∂MΦ∂NΦ +

1

2
ηMN∂MΞ∂NΞ − V (Φ,Ξ)

]

,

V (Φ,Ξ) =
λ

4

(

Φ2 − v2
)2

+
λ̃

4
Ξ4 +

1

2
M2Ξ2 +

1

2
α(Φ2 − v2)Ξ2 , (3.1)

Provided λλ̃v4 > (αv2−M2)2, the system has a degenerate ground state (ΦGS = ±v,ΞGS =

0) and we can therefore set up a domain wall interpolating between the two vacua.5 It can

be easily verified that the kink configuration:

(ΦK ,ΞK) = (v tanh(ay), 0) (3.2)

with a2 = λv2/2 is always a solution to the classical equations of motion.

As per usual, excitations of Φ and Ξ localized on the defect will play the role of the

four-dimensional fields. In order to determine the field content of the four-dimensional

theory we consider perturbations around the kink configuration, which can be written:

Φ(x, y) = ΦK(y) + φ(x, y) = ΦK(y) +
∑

n

∫

fn(y)un(x) ,

Ξ(x, y) = ξ(x, y) =
∑

k

∫

hk(y)vk(x) , (3.3)

where we use the sign
∑
∫

as a shorthand indicating both summing over the discrete states

of the spectrum and integration over the continuum. The modes un(x) and vn(x) sat-

isfy the four-dimensional Klein-Gordon equations (and therefore can be interpreted as

four-dimensional scalar fields) and fn(y) and hn(y) are the wavefunctions determining the

localization of the modes on the brane (fn(y) being the familiar normal modes of the kink).

These satisfy the following Schrödinger-like equations:















−∂2
yfn +

(

4a2 − 6a2

cosh2(ay)

)

fn = m2
nfn

−∂2
yhk +

(

M2 − αv2

cosh2(ay)

)

hk = m̃2
khk ,

(3.4)

where the eigenvalues m2
n and m̃2

n are masses of the four-dimensional fields (squared).

As expected, the lightest state in our model is the zero mode u0(x) with wavefunction:

f0(y) =

√
3a

2 cosh2(ay)
. (3.5)

4This model has also been considered in [31] where the spectrum of its perturbations has been determined.
5Condition λλ̃v4 > (αv2

−M2)2 ensures that the potential is positive everywhere except at (ΦGS , ΞGS) =

(±v, 0) where it vanishes. The detailed form of the potential depends on the choice of parameters and for

instance for M2 < αv2 additional local minima (with higher energy) may appear.

– 5 –
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It is the translation mode of the kink, appearing as a result of spontaneous breaking of the

translation invariance along the extra dimension by the presence of the brane. It should be

noted that (3.2) is one among the infinity of kink configurations of equal energy. Indeed, as

the Lagrangian in (3.1) is translationaly invariant, the equations of motion are satisfied by

(Φ
(y0)
K ,Ξ

(y0)
K ) = (v tanh(a(y − y0)), 0)

for an arbitrary y0. Naturally, being y-dependent any such kink configuration breaks the

translational symmetry. Under an infinitesimal translation, ΦK changes by:

∆ΦK = ΦK(y − δy0) − ΦK(y) ≈ −δy0Φ
′
K(y) ,

where Φ′
K(y) is nothing else but the eigenfunction f0 of the zero mode (up to a normaliza-

tion constant). The fact that u0 is massless reflects the fact that a displacement leaves the

kink’s energy unchanged.

The rest of the spectrum of perturbations of Φ consists of a heavy mode of mass

m2
1 = 3a2 and of the continuum of modes which are not localized on the brane.

As for the spectrum of Ξ, the number of modes localized on the brane and their

masses depend on the parameters of our model. The lowest localized mode of Ξ is v1(x)

with wavefunction:

h1(y) =
N1

√
a

coshσ(ay)
(3.6)

where

σ = −1

2
+

1

2

√

1 + 8
α

λ
and N1 =

(
∫ ∞

−∞

dy a

cosh2σ(ay)

)−1/2

=

√

Γ
(

σ + 1
2

)

√
πΓ(σ)

. (3.7)

Mass of v1(x) is given by

m̃2
1 = −σ2a2 + M2

and therefore it can be made small (compared to a, the heavy scale of the model) by setting

M2 = σ2a2 +
λv2

4
ǫ2 ,

with |ǫ| ≪ 1. We have then

m̃2
1 =

λv2

4
ǫ2 .

Whether or not there are other localized modes in the spectrum of Ξ depends on the

value of σ, but if they are present, their masses are necessarily large compared to m̃1. We

thus have a gap between the light and the heavy modes which can be made arbitrarily

large by tuning ǫ.

To resume, the particle content of our low energy four-dimensional theory will consist

of two scalar fields — one massless u0 which is an intrinsic brane perturbation, and one

massive v1, which will play the role of the “matter field” localized on the brane. The

gap between the light modes and the heavy modes is proportional to a, and therefore

– 6 –
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the larger a is, the wider the gap becomes. This feature will allow us to derive the four-

dimensional low energy effective action for the light fields as a series in powers of 1/a (or,

equivalently, in powers of ǫ). Additionally, as our calculations will be mainly classical,

we need to work in the weak coupling regime in order to be able to neglect consistently

quantum corrections.6 To this aim, we require that all the five-dimensional couplings are

roughly of the same order and small (in dimensionless units),

λa ∼ λ̃a ∼ αa ≪ 1. (3.8)

The effects of the nonlinear couplings in effective action can therefore also be expanded

in powers of these couplings. Note that in the following, we will use the fact that these

couplings are of the same order and loosely refer to this as the expansion in powers of λa.

In order to ensure that the radiative corrections do not spoil the mass hierarchy of the

modes, we will also assume ǫ2 ≫ λa.

In fact, rather than using (3.3) in order to derive the four-dimensional low energy

effective action, it is judicious to replace u0(x) with a collective coordinate (see e.g. [32])

associated with the translation of the kink which we will denote Y (x),7 and rewrite the

perturbations around the classical kink configuration as follows:



















Φ(x, y) = ΦK(y − Y (x)) +
∑

n 6=0

∫

fn(y − Y (x))un(x) ,

Ξ(x, y) = h1(y − Y (x)) v1(x) +
∑

n 6=1

∫

hk(y − Y (x)) vk(x) .
(3.9)

This parametrization has two advantages: first of all, the collective coordinate Y (x) has

a simple geometric interpretation as the transverse coordinate of the brane (hence our

choice of notation) and therefore using the collective coordinate approach allows us to

make a direct connection with the geometric framework in which the Nambu-Goto action

is obtained (as described in section 2). The comparison between the low energy effective

action of the domain wall, which we will present in the next section and the Nambu-Goto

action, eqs. (2.2) and (2.3), will be completely straightforward. Secondly, expansion (3.9)

captures the Goldstone boson nature of the massless scalar present in our theory better

than (3.3), yielding automatically only derivative interactions for the branon field Y (x).

4 Effective action

Let us now proceed to determine the four-dimensional low energy effective action, which

is constructed, as usual, as a series in the inverse of the heavy scale of the model (in our

case, a) and its small parameters, in our case ǫ = m̃1/a and λa (let us remind that λa ≪ 1 is

the weak coupling condition for our model). More specifically, our goal will be to determine

6The first quantum corrections typically take the form of the one loop diagram with two λΦ4 vertices.

In five dimensions this diagram will be of order λ2a. Imposing that this correction is small in comparison

to just one Φ4 vertex gives λ2a ≪ λ.
7Essentially, introducing Y (x) amounts to promoting the constant y0 denoting the position of the center

of the kink into a dynamical variable.

– 7 –
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the effective action at the tree level at the first order in coupling λ. Our aim is to get more

insight into the interactions of the zero mode (the branon field). Comparison with the

Nambu-Goto action (2.3) requires that we determine the action up to the order O(1/τ).

4.1 Formal expansion

In order to calculate the effective action, we first substitute the expansion (3.9) into the

action (3.1) and perform the integration over y (using the orthonormality of the wavefunc-

tions fn(y) and hn(y)). Unsurprisingly, this produces a four-dimensional action containing

a plethora of terms, including interactions between the light fields, interactions of the light

fields with one, two or three heavy fields and finally interaction terms involving only the

heavy fields. More explicitly:

S =

∫

d4x

{

−τ +
1

2
∂µỸ ∂µỸ +

1

2
∂µv1∂µv1 −

1

2
m̃2

1v
2
1−

λ
(0)
4

4
v4
1 + λ

(0)
(2,2)v

2
1 ∂µỸ ∂µỸ +

+
1

2

∑

n 6=0

∫

[

∂µun∂µun − m2
nu2

n

]

+
1

2

∑

n 6=1

∫

[

∂µvn∂µvn − m̃2
nv2

n

]

+ Lint
heavy

}

(4.1)

where Lint
heavy contains the interactions between the heavy and the light modes and where

again, as in section 2, we have replaced Y (x) by the properly normalized field Ỹ (x):

Ỹ (x) =
√

τ Y (x) .

The leading term of our action:

τ =

∫

dy Φ′ 2
K =

4

3
av2 =

8a3

3λ

is the tension of the brane (the energy density of the kink). Let us notice that the weak cou-

pling condition (3.8) implies τ ≫ a4. The couplings of the interaction terms involving only

the light fields can be expressed by the parameters of the five-dimensional model as follows:

λ
(0)
4 = λ̃

∫

dy h4
1 = λ̃a

Γ2(σ + 1
2)Γ(2σ)

√
πΓ2(σ)Γ(2σ + 1

2)
(4.2)

λ
(0)
(2,2) =

1

τ

∫

dy h′2
1 =

σ2

(1 + 2σ)

a2

τ
=

3σ2

8(1 + 2σ)

λ

a
. (4.3)

Finally, sorting the interactions between light and heavy modes by the number of heavy

modes we have

Lint
heavy =

∑

n 6=0

∫

J (1)
n un +

1

2

∑

n,m6=0

∫

J (2)
nmunum +

∑

n,m6=0

∫

Kµ
nmun∂µum +

+
∑

n 6=1

∫

J̃ (1)
n vn +

1

2

∑

n,m6=1

∫

J̃ (2)
mnvnvm +

∑

n,m6=1

∫

K̃µ
nmvn∂µvm +

+
∑

n 6=0

∫

∑

m6=1

∫

˜̃J (2)
nmunvm + . . . , (4.4)

– 8 –
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Figure 1. Heavy mode correction to the quartic coupling of the light mode

where J
(1)
n , J̃

(1)
n , J

(2)
nm, J̃

(2)
nm, ˜̃J

(2)
nm, Kµ

nm and K̃µ
mn denote some combinations of the light

fields. Their exact form is at this stage inessential (see appendix A for the explicit expres-

sions). The dots stand for all interaction terms containing three or four heavy fields.

Now, one might presume that at least at the leading order of approximation, the ef-

fective action can be obtained simply by ignoring the heavy fields altogether and is given

by the first line of the action (4.1), which contains the kinetic terms for v1 and Ỹ and

two interaction terms involving only these two light fields. As it happens, an action thus

obtained would fail to capture properly the interactions of our low energy effective four-

dimensional theory which, as we will see shortly, are strongly modified by the presence of

the heavy modes.

The reason as for why this would have been the case, lies in the presence of trilinear

interaction terms of the form llh between the light modes (l) and the heavy modes (h),

e.g. v2
1un or ∂µỸ ∂µỸ un appearing in the action (4.1) through J

(1)
n un.

It was already pointed out in [33], in the context of 4D low energy effective actions

derived from higher-dimensional theories with broken symmetries, that when terms of the

type llh are present in the theory, the heavy modes cannot be simply dropped, as they will

contribute to the effective action at the fourth order in fields through diagrams of the type

depicted schematically on figure 1. What’s more, due to the specific hierarchy of couplings

between the light modes among themselves and their couplings to the infinite number of

heavy fields (which is a characteristic feature of a theory obtained through a dimensional

reduction) the contribution of the heavy fields towards the effective action is enhanced and

is of the same order as the interaction terms calculated using only the light modes. As a

consequence, as we will see below, these interactions get quite drastically modified by the

contributions coming from the heavy modes.

4.2 Integrating out the heavy modes

The procedure to derive the effective action for v1 and Ỹ from (4.1) is somewhat compli-

cated by the fact that these two fields have very different couplings to the heavy modes,

as well as by the presence of the infinite towers of the heavy modes. It remains, however,

quite standard in essence: In order to obtain the correct effective action in the tree ap-

proximation, the heavy fields un and vn must be integrated out, which consists in solving
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their classical equations of motion:

∂µ∂µun + m2
nun = J (1)

n +
∑

m6=0

∫

(J (2)
nm − ∂µKµ

mn)um

+
∑

m6=0

∫

(Kµ
nm − Kµ

mn)∂µum +
∑

m6=1

∫

˜̃J (2)
nmvm + . . . (4.5)

∂µ∂µvn + m̃2
nvn = J̃ (1)

n +
∑

m6=0

∫

(J̃ (2)
nm − ∂µK̃µ

mn)vm

+
∑

m6=0

∫

(K̃µ
nm − K̃µ

mn)∂µvm +
∑

m6=0

∫

˜̃J (2)
mnum + . . . (4.6)

and then substituting the solutions back into the classical action (4.1).

Formally, the solutions of equations (4.5) and (4.6), which we will denote ūn and v̄n,

can be written:

ūn =
(

∂µ∂µ + m2
n − J (2)

nn + ∂µKµ
nn

)−1



J (1)
n +

∑

m6=0
m6=n

∫

(

J (2)
nm − ∂µKµ

mn

)

ūm+

+
∑

m6=0
m6=n

∫

(

Kµ
nm − Kµ

mn

)

∂µūm +
∑

m6=1

∫

˜̃J (2)
nmv̄m + . . .



 (4.7)

v̄n =
(

∂µ∂µ + m̃2
n − J̃ (2)

nn + ∂µK̃µ
nn

)−1



J̃ (1)
n +

∑

m6=1
m6=n

∫

(

J̃ (2)
nm − ∂µK̃µ

mn

)

v̄m+

+
∑

m6=1
m6=n

∫

(

K̃µ
nm − K̃µ

mn

)

∂µv̄m +
∑

m6=0

∫

˜̃J (2)
mmūm + . . .



 . (4.8)

The explicit solutions are to be found perturbatively, in powers of 1/mn and 1/m̃n, and of

the couplings λ, α and λ̃. Performing the expansion in 1/mn and 1/m̃n we obtain:

ūn =

[

1

m2
n

− 1

m4
n

∂µ∂µ + . . .

]

J (1)
n +

1

m2
n

∑

m6=0

∫

1

m2
m

[

J (2)
nm − ∂µKµ

mn

]

J (1)
m +

+
1

m2
n

∑

m6=0

∫

1

m2
m

(Kµ
nm − Kµ

mn) ∂µJ (1)
m +

1

m2
n

∑

m6=1

∫

1

m̃2
m

˜̃J (2)
nmJ̃ (1)

m + . . . (4.9)

v̄n =

[

1

m̃2
n

− 1

m̃4
n

∂µ∂µ + . . .

]

J̃ (1)
n +

1

m̃2
n

∑

m6=1

∫

1

m̃2
m

[

J̃ (2)
nm − ∂µK̃µ

mn

]

J̃ (1)
m +

+
1

m̃2
n

∑

m6=1

∫

1

m̃2
m

(

K̃µ
nm − K̃µ

mn

)

∂µJ̃ (1)
m +

1

m̃2
n

∑

m6=0

∫

1

m2
m

˜̃J (2)
mnJ (1)

m + . . . (4.10)

Substituting the solutions ūn and v̄n back into the action (4.1) yields:

Seff =

∫

d4x

{

−τ +
1

2
∂µỸ ∂µỸ +

1

2
∂µv1∂µv1 −

1

2
m̃2

1v
2
1−

λ
(0)
4

4
v4
1 + λ

(0)
(2,2)v

2
1 ∂µỸ ∂µỸ
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− 1

2

∑

n 6=0

∫

J (1)
n

(

1

m2
n

− 1

m4
n

∂µ∂µ + . . .

)

J (1)
n

− 1

2

∑

n,m6=0

∫

1

m2
nm2

m

[(

J (2)
nm − ∂µKµ

mn

)

J (1)
m + (Kµ

nm − Kµ
mn) ∂µJ (1)

m

]

J (1)
n

− 1

2

∑

n 6=1

∫

J̃ (1)
n

(

1

m̃2
n

− 1

m̃4
n

∂µ∂µ + . . .

)

J̃ (1)
n

− 1

2

∑

n,m6=1

∫

1

m̃2
nm̃2

m

[(

J̃ (2)
nm − ∂µK̃µ

mn

)

J̃ (1)
m +

(

K̃µ
nm − K̃µ

mn

)

∂µJ̃ (1)
m

]

J̃ (1)
n

−
∑

n 6=0

∫

1

m2
n

∑

m6=1

∫

1

m̃2
m

˜̃J (2)
mnJ (1)

n J̃ (1)
m + . . .

}

(4.11)

In order to determine the explicit form of the effective action in terms of v1 and Ỹ , we must

use the explicit expressions for J
(1)
n , J̃

(1)
n , J

(2)
nm, J̃

(2)
nm, ˜̃J

(2)
nm, Kµ

nm and K̃µ
mn. The dominant

contributions to the action must come from (J (1)/mn)2 and (J̃
(1)
n /m̃n)2, where J

(1)
n and J̃

(1)
n

are given by the following combinations of the light fields:

J (1)
n =

1

τ

(
∫

dy Φ′
Kf ′

n

)

∂µỸ ∂µỸ − α

(
∫

dy ΦKh2
1fn

)

v2
1 (4.12)

J̃ (1)
n =

1√
τ

(
∫

dy h1h
′
n

)

[

−2∂µv1∂µỸ + v1∂
µ∂µỸ

]

− λ̃

(
∫ ∞

−∞

dy h3
1hn

)

v3
1 +

+
1

τ

(
∫ ∞

−∞

dy h′
1h

′
n

)

v1∂
µỸ ∂µỸ . (4.13)

Although the couplings involved in these expressions are fairly complicated functions of

the background field and the wavefunctions of both light and heavy modes, we can at least

estimate their order of magnitude. The estimation can be performed very easily, through

dimensional analysis: each wavefunction contributes a factor a−1, each derivative gives a

factor a, ΦK ∼ O
(

a/
√

λ
)

and the tension is τ ∼ O
(

λ−1a3
)

. Applying this simple recipe

to (4.12) and (4.13) we see that:

J (1)
n ∼ O

(

√

λ

a

)

∂µỸ ∂µỸ + O
(√

λa3
)

v2
1 (4.14)

J̃ (1)
n ∼ O

(

√

λ

a

)

[

−2∂µv1∂µỸ + v1∂
µ∂µỸ

]

+ O
(

λ̃a
)

v3
1 + O

(

λ

a

)

v1∂
µỸ ∂µỸ (4.15)

The contributions to the effective action relevant at the first order in λ can only come from

the terms of J
(1)
n and J̃

(1)
n which are quadratic in v1 and Ỹ . It is also obvious that that

the contributions coming from any terms involving J
(2)
nm, J̃

(2)
nm, ˜̃J

(2)
nm, Kµ

nm and K̃µ
mn are only

relevant at order λ2, as they are all accompanied by factors
(

J (1)/mn

)2
and (J̃

(1)
n /m̃n)2

and therefore can be neglected.

4.3 Effective action at the leading order

Let us start by determining the effective action at order λa−1, that is the order of the λ
(0)
(2,2)

coupling between the branon and the scalar appearing in the action (4.1).

– 11 –
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Eqs. (4.14) and (4.15) make apparent the fact which we have mentioned above, when

discussing the importance of the heavy modes: the leading contributions to the quartic

coupling λ4v
4
1 and to the coupling λ(2,2)v

2
1∂

µỸ ∂µỸ yielded by the heavy modes (that is,

contributions involving the leading, constant term of the propagators) are of O (λa) and

of O
(

λa−1
)

, respectively; that is of the same order as λ
(0)
4 and λ

(0)
(2,2), given by (4.2)

and (4.3). The actual values of the effective coupling constants can be found by performing

the sums over the heavy modes (this can be done using completeness of the eigenfunctions

and some algebraic relations between the background and the wavefunctions of the light

modes; see appendix B for details).

Once the couplings are calculated, the effective action at order λa−1 reads:

Seff =

∫

d4x

{

−τ +
1

2
∂µỸ ∂µỸ +

1

2
∂µv1∂µv1 −

1

2
m̃2

1v
2
1−

λ
(1)
4

4
v4
1 +

λ′
4

4
v2
1∂

µ∂µv2
1

}

, (4.16)

where the contribution of the heavy modes shifted the effective quartic coupling constant:

λ
(1)
4 = λ

(0)
4 − 1

2τ2

∑

n 6=0

∫

1

m2
n

(
∫ ∞

−∞

dy Φch
2
1fn

)2

=

(

λ̃ − λ
σ2

4

)
∫ ∞

−∞

dy h4
1 (4.17)

and cancelled — at the leading order λa−1 — the coupling of the interaction

term v2
1∂

µỸ ∂µỸ :

λ
(0)
(2,2) −

α

τ

∑

n 6=0

∫

1

m2
n

(
∫ ∞

−∞

dy Φ′
Kf ′

n

)(
∫ ∞

−∞

dy ΦKh2
1fn

)

= 0 . (4.18)

The coupling λ′
4 is:

λ′
4 =

α2

2

∑

n 6=0

∫

1

m4
n

(
∫ ∞

−∞

dy ΦKh2
1fn

)2

=
λ

a
J(σ) (4.19)

with

J(σ) =
σ2

2

(
∫ ∞

−∞

dy

cosh2σ(y)

)−2 ∫ ∞

−∞

dy

cosh4(y)

(
∫ y

0
dy′ [cosh(ay′)]2−2σ

)2

.

The action can be further simplified using

∫

d4x v2
1∂

µ∂µv2
1 = −4

3

∫

d4x v3
1∂

µ∂µv1 =
4

3
m̃2

1

∫

d4x v4
1 ,

where in the last step we have used the equation of motion for v1 (the quartic term is

negligible at the first order in λ). As the coupling λ′
4 ∼ O(λa−1), this term therefore gives

a correction to the quartic coupling suppressed by m̃2
1/a

2 and can be reabsorbed through

the redefinition of this coupling:

λ4 = λ
(1)
4 − 4

3
m̃2

1λ
′
4 ≈ λ

(1)
4 .

– 12 –
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At the order O(λa−1), our effective action reads therefore:

Seff =

∫

d4x

{

−τ +
1

2
∂µỸ ∂µỸ +

1

2
∂µv1∂µv1 −

1

2
m̃2

1v
2
1 − λ4

4
v4
1

}

. (4.20)

Let us stress that the equations of motion for v1 and Ỹ can be used (at order λa−1 or

any higher order of the calculation) without any loss of generality and that, in particular,

using them does not imply that our effective action is only valid on-shell. Any terms

proportional to the equations of motion appearing at any given order of approximation in

the calculation of the effective action, can be eliminated simply by a redefinition of the two

fields which does not modify the rest of the action (for instance, the redefinition allowing

to pass from (4.16) to (4.20) is v1 → v1 − 2
3λ′

4v
3). Following this logic, in the subsequent

calculations we can therefore also use the equation of motion for Ỹ to set to zero all the

terms of the effective action proportional to ∂µ∂µỸ .

As we see, at order O(λa−1), the branon is decoupled from v1. This feature of the

effective action (4.20) is obviously in agreement with the Nambu-Goto action, eq. (2.2), in

which any coupling of branon excitation to the matter must be suppressed by the tension

of the brane (which, let us remind, is in our case of order O(λ−1a3)).

4.4 Effective action at order O(1/τ)

Interactions between the scalar field v1 and the branon Ỹ do appear at order O(λa−3),

or in other words at O (1/τ). The effective action at this order reads (the details of the

calculation of coupling constants can be found in appendix B):

Seff =

∫

d4x

{

−τ +
1

2
∂µỸ ∂µỸ +

1

8τ

(

∂µỸ ∂µỸ
)2

+
1

2
∂µv1∂µv1 −

1

2
m̃2

1v
2
1 − λ4

4
v4
1

+
1

2τ
∂µỸ ∂ν Ỹ ∂µv1∂νv1 +

1

2τ
I(σ)∂µỸ ∂µỸ

[

∂νv1∂νv1 − m̃2
1v

2
1

]

}

, (4.21)

where I(σ) is the following function:

I(σ) ≡ σ

(
∫ ∞

−∞

dy
1

cosh2σ(x)

)−1 ∫ ∞

−∞

dy
y

cosh4(y)

∫ y

0
dy′ [cosh(y′)]2−2σ . (4.22)

The graph of the function I(σ) is presented on figure 2. Comparing our effective action,

eq. (4.21), with the Nambu-Goto action, eq. (2.3), we see that although the two are very

similar, they are not identical. Indeed:

Sscalar
NG − Seff = − 1

4τ
(1 + 2I(σ))

∫

d4x ∂µỸ ∂µỸ
[

∂αv1∂αv1 − m2
1v

2
1

]

. (4.23)

We see, therefore, that the actual form of the action seems to depend on the underlying

field-theoretical model, even in the thin wall limit. Moreover, I(σ) takes positive values

for positive σ, which means that whatever value of σ we choose, our effective action will

never be exactly equal to the Nambu-Goto action.
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Figure 2. Parameter I(σ) appearing in the effective action

4.5 Covariant formulation

Even if the effective action of the domain wall which we have determined is not identical

to the Nambu-Goto action, we can expect it to obey the same fundamental covariance

principles, the branon Ỹ entering the action only through the induced metric gµν = ηµν −
∂µỸ ∂ν Ỹ /τ (and its derivatives). We should therefore be able to rewrite our effective

action (4.21) in terms of geometric invariants, as it is the case for the Nambu-Goto action.

This amounts to rewriting (4.23) in a covariant way, which can be achieved noticing that

(up to total derivatives and inessential terms involving derivatives of ∂α∂αỸ ):

Sscalar
NG − Seff = − 1

8τ
(1 + 2I(σ))

∫

d4x ∂µỸ ∂µỸ ∂α∂αv2
1

= − 1

4τ
(1 + 2I(σ))

∫

d4x v2
1 ∂α∂µỸ ∂α∂µỸ .

This last expression can be readily related with the Ricci scalar calculated from the induced

metric, which reads:

R = −1

τ
∂α∂α

(

∂ν Ỹ ∂ν Ỹ
)

+
1

τ
∂α∂ν

(

∂αỸ ∂ν Ỹ
)

= −1

τ
∂α∂ν Ỹ ∂α∂ν Ỹ +

1

τ

(

∂ν∂ν Ỹ
)2

. (4.24)

Our effective action can therefore be written:

Seff =

∫

d4x
√

g

{

−τ +
1

2
gµν∂µv1∂νv1 −

1

2
m̃2

1v
2
1 − λ4

4
v4
1 − 1

4
(1 + 2I(σ)) v2

1R

}

, (4.25)

where we have eliminated the inessential term (∂ν∂ν Ỹ )2 appearing in the expression for R.

The action (4.25) is therefore the sum of the familiar Nambu-Goto action and an additional

interaction term between the scalar and the branon involving the Ricci scalar of the induced
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metric ξv2
1 R. Our model of domain wall being fairly generic, the presence of this term is

also a generic feature of the brane action.

Non-minimal coupling of the form ξRv2
1 reminds the gravitational term in tensor-

scalar theories of gravity [34], appearing naturally in string theory as dilaton coupling. It

should be stressed, however, that there is no dynamical graviton in our setup and that the

curvature R is here only a self-coupling of the branon Ỹ . It is quite likely though that such

terms, with R playing the role of the kinetic term of the graviton, would be generated as

induced gravity effects [26] when quantum corrections are taken into account.

4.6 Finite-width corrections

To conclude this section, let us take a brief look at the corrections of order O
(

λa−5
)

to

our effective action, focusing on the branon part. At this order the brane action reads:

Sbrane ≈
∫

d4x

{

−τ +
1

2
∂µỸ ∂µỸ +

+
1

2τ2

∑

n 6=0

∫
(
∫ ∞

−∞

dy Φ′
Kf ′

n

)2

∂µỸ ∂µỸ

[

1

m2
n

− 1

m4
n

∂α∂α

]

∂ν Ỹ ∂ν Ỹ

}

.(4.26)

Calculating the contribution of O(p2) corrections in the expansion of the propagators

we find:

Sbrane =

∫

d4x

{

−τ+
1

2
∂µỸ ∂µỸ +

1

8τ

(

∂µỸ ∂µỸ
)2

− π2−6

48τa2

(

∂µỸ ∂µỸ
)(

∂α∂ν Ỹ ∂α∂ν Ỹ
)

}

.

(4.27)

In the last term of this action, a subdominant quartic self-coupling of Ỹ , we can again

identify the curvature scalar R. As R is a total derivative (see eq. (4.24)), we can include

it in the action (4.27), which can then be rewritten in the covariant form:

Sbrane =

∫

d4x
√

g

{

−τ − π2 − 6

24a2
Rτ

}

. (4.28)

This is the correction to the Nambu-Goto action which has been obtained in [30] using

Gauss-Coddazzi formalism in the case when the width of the domain wall (which, let us

remind, is of order O(a−1)) is small but finite. The “antirigidity” term proportional to

the trace K of the extrinsic curvature appearing in [30] (see eq. (2.4)) is absent in our

setup. Also, any terms proportional to K appearing at higher orders in the calculation of

the effective action can be set to zero. Indeed, in terms of the branon field, the extrinsic

curvature reads Kµν = ∂µ∂ν Ỹ /
√

τ and therefore K = Kµ
µ is proportional to the lowest

order equation of motion for Ỹ , K = ∂µ∂µỸ /
√

τ . As we have already stressed, within the

region of validity of our effective theory, any such terms can be consistently eliminated

from the action through redefinition of the fields.

5 Physical implications

We have seen that our low energy effective action differs from the Nambu-Goto action

by an additional interaction term of the scalar field v1 with the branon Ỹ . Naturally,
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we expect the presence of this term to have physical effects and in this section we will

investigate some of them.

5.1 Scalar-branon scattering

The simplest physical process in which we expect a manifestation of the difference between

our effective action and Nambu-Goto action is the scattering of the scalar field v1 on

branons. At leading order, it is described by the following terms in the action (4.21):

1

2τ
∂µỸ ∂ν Ỹ ∂νv1∂

µv1 +
1

2τ
I(σ)∂µỸ ∂µỸ ∂νv1∂νv1 −

1

2τ
I(σ)m̃2

1v
2
1∂µỸ ∂µỸ (5.1)

These give a four-particle vertex with amplitude

g(p1, p2, p3, p4) =

v1

v1 ~p1

~p2

Ỹ

~p3

~p4 Ỹ

= −i
1

τ
[p2,µpµ

4p1,νp
ν
3 + p1,µpµ

4p2,νp
ν
3 ]

−i
2

τ
I(σ)p3,νpν

4

[

p1,µpµ
2 + m̃2

1

]

, (5.2)

where we consider that all momenta are incoming. In the center-of-mass frame we have,

p1 = (ω1, ~p1), p2 = (ω1,−~p1) with ω1 =
√

|~p1|2 + m̃2
1 and p3 = (ω3, ~p3), p4 = (ω3,−~p3) with

ω3 = |~p3|.
The differential cross section for this process is:

dσ

dΩ
=

1

2(8π)2s

|~p3|
|~p1|

|g|2 , (5.3)

where

|g|2 =
1

τ2

∣

∣2ω2
1ω

2
2(1 + 4I(σ)) + 2(~p1 · ~p3)

2
∣

∣ =
1

(8τ)2
∣

∣(2m̃2
1 − t − u)2(1 + 4I) + (t − u)2

∣

∣

2
,

s = (p1 + p2)
2 = 4w2

1 , t = (p1 − p3)
2, u = (p1 − p4)

2 being the Mandelstam variables.

The corresponding result for the Nambu-Goto action is obtained when replacing I(σ)

by −1
2 . Remember however that I(σ) never reaches −1

2 for any σ.

5.2 Corrections to the potential of the fifth force

As it has already been noticed in [17], massless branons can mediate a long-range force

between particles on the brane. In [17] the static potential arising from the branon exchange

between two fermions of masses m and m′ has been derived:

V (r) = − 3

128π3τ2

mm′

r7
, (5.4)

where r denotes the distance between the two particles and the minus sign implies an

attractive force. Given that branons couple to matter fields only through the induced met-

ric, we can expect this force to be gravity-like in the sense to be universal (independent

of charge or spin of the interacting particles, as suggested by (5.4)). We expect the addi-

tional coupling between the light scalar and the branon appearing in our effective action
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to produce corrections to the potential (5.4). To determine the nature of these corrections,

let us calculate the potential resulting from the branon exchange between two scalars v1.

We follow here the analysis of [17], where more details on the calculation can be found.

The leading contribution to the static potential between two v1’s of mass m̃1 comes

from the one loop diagram containing two vertices (5.2):

− iMeff(p1, p3, q) =

v1

v1

Ỹ Ỹ

~p1

~p2
v1

~p3

~p4

~k~q − ~k

v1

=
1

2τ2

∫

d4k

(2π)4
g(p1, p2,−k, k − q)g(p3, p4, k, q − k)

k2(k − q)2
(5.5)

The scattering amplitude Meff can be computed using the method of dimensional regu-

larization (by changing the dimension in the integral to n = 4 − 2ε to extract divergent

contributions). When the scalars are non-relativistic (p1 = p3 = (m̃1,~0)), it depends on

the momentum transfer q only,

− iMeff(q) =
1

2τ2

[

m̃4
1q

4

(

23

150
− 1

20
log

(

− q2

µ2

)

+
1

20ε

)

− m̃2
1q

6I(σ)

(

4

9
− 1

6
log

(

− q2

µ2

)

+
1

6ε

)

(5.6)

+ q8I2(σ)

(

1

2
− 1

4
log

(

− q2

µ2

)

+
1

4ε

)]

,

where we have introduced a renormalization scale µ. The divergent constants can be renor-

malized introducing higher-dimensional counterterms in the Lagrangian, only the logarith-

mic terms are of physical relevance. The effective static potential can be computed as the

Fourier transform of the amplitude Meff:

V (r) =
1

4m̃2
1

∫

d3q

2π3
eiqrMeff(q), (5.7)

where the factor 4m̃2
1 comes from the difference of normalization between relativistic and

non-relativistic fields. The integral can be performed in the complex plane and only the

discontinuity of the logarithm contributes. The static potential reads:

V (r) = − 3

128π3τ2

m̃2
1

r7
− 105I(σ)

8π3τ2

[

1

4r9
+

27I(σ)

m̃2
1r

11

]

. (5.8)

The leading term is identical to (5.4). As expected, non-minimal coupling of the scalar

to the branon field produces subleading contributions to the static potential. It should be

stressed that as the coupling ξRv2
1 is particular to scalars (for dimensional reasons), we

cannot expect these corrections to be universal.
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5.3 “Higgs” decay into branons

The most remarkable effect of the ξRv2
1 coupling in our effective action appears in the

presence of spontaneous symmetry breaking in the four-dimensional theory.8 Indeed, it can

be readily seen that this term opens the possibility of decay of the scalar v1 (which we can

now consider as a toy Higgs field) into branons. When changing the sign of the mass term in

our effective action, eq. (4.25), v1 acquires a vacuum expectation value cv ≈ m̃2
1/λ4. Shifting

the field, v1 → v1 +cv, we obtain the following trilinear interaction term in the Lagrangian:

m̃2
1

2τ

(

I(σ) +
1

2

)

v2
1∂µỸ ∂µỸ

v1→v1+cv−−−−−−−→ cv

τ
m̃2

1

(

I(σ) +
1

2

)

v1∂µỸ ∂µỸ + . . . , (5.9)

which gives a three-particle vertex with amplitude

M =
v1

~q

Ỹ

~k

~p Ỹ

=
cv

τ

(

I(σ) +
1

2

)

m̃2
1kµpµ. (5.10)

This yields the rate of the decay of v1 for into two branons:

Γv1→Ỹ Ỹ =
1

4m̃1

∫

d3k

(2π)3
d3p

(2π)3
(2π)4δ4(q − p − k)

4p0k0
|M|2. (5.11)

If the Higgs particle is at rest, we have q = (m̃1, 0), k = ( m̃1

2 , ~k), p = ( m̃1

2 ,−~k) with

|~k| = m̃1

2 . In this case, the decay rate is

Γv1→Ỹ Ỹ =
m̃7

1c
2
v

128πτ2

(

I(σ) +
1

2

)2

=
m̃9

1

256πλ4τ2

(

I(σ) +
1

2

)2

. (5.12)

It is natural to assume that in a more realistic brane model, involving the physical Higgs,

such a process would also be present. It could be a good indicator of the existence of

branons and would put bounds on the allowed value of the brane tension. For instance, if

the Higgs mass is 150 GeV and the brane tension is τ = (300GeV)4 , then the Higgs decay

width into branons is Γv1→Ỹ Ỹ ≈ 4 ·10−3 GeV which is roughly 1/3 of the total decay width

for the Higgs in the Standard Model (through standard, non-exotic, channels), see [23]. Of

course, for these optimistic values of m̃1 and τ our calculations are only marginally valid

and for smaller ratios of the Higgs mass to the tension, this decay is rapidly suppressed

(because of the factor (m̃4
1/τ)2) and therefore very difficult to detect.

6 Conclusions

We have determined the effective action on the brane in an explicit field-theoretical model,

where the brane is modelled by a domain wall in the five-dimensional Minkowski space. In

8Strictly speaking our derivation of the effective action is not valid in this case, as when m̃2

1 < 0 the

kink configuration (3.2) becomes unstable. However, by covariance principles, we can expect that the

form of the action will be the same (except for the sign of the mass term). This is confirmed by our

calculations performed by perturbation around the background configuration in the broken phase, which

will be presented elsewhere.
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this model, the four-dimensional low energy field theory contains two scalar fields localized

on the brane, one of which is a massless branon excitation whereas the other (endowed with

a small mass) plays the role of a matter field. Our calculation confirms the importance

of the heavy modes of the spectrum in the derivation of the effective action, as pointed

out in [33]. The comparison of the four-dimensional effective action with the Nambu-Goto

action has revealed the presence of an additional interaction term between the branon and

the light scalar, which is proportional to the curvature scalar. Presence of this term modifies

the cross section of the branon-scalar scattering and yields short-distance corrections to

the potential of the “fifth force” mediated by branons. In the presence of spontaneous

symmetry breaking, this term allows for a non-zero decay of the “Higgs” into branons,

which could be used to put bounds on the allowed value of the brane tension.
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A Explicit expressions for the couplings of the heavy fields

The explicit expressions for the combinations of lights fields coupling to the heavy fields,

entering the action (4.1) are:

J (1)
n =

1

τ

(
∫

dy Φ′
Kf ′

n

)

∂µỸ ∂µỸ − α

(
∫

dy ΦKh2
1fn

)

v2
1 (A.1)

J̃ (1)
n =

1√
τ

(
∫

dy h1h
′
n

)

[

−2∂µv1∂µỸ + v1∂
µ∂µỸ

]

− λ̃

(
∫ ∞

−∞

dy h3
1hn

)

v3
1 +

+
1

τ

(
∫ ∞

−∞

dy h′
1h

′
n

)

v1∂
µỸ ∂µỸ (A.2)

J (2)
nm = −α

(
∫ ∞

−∞

dy h2
1fnfm

)

v2
1 +

1

τ

(
∫ ∞

−∞

dy f ′
nf ′

m

)

∂µỸ ∂µỸ (A.3)

Kµ
nm = − 1√

τ

(
∫ ∞

−∞

dy f ′
nfm

)

∂µỸ (A.4)

J̃ (2)
nm = −3λ̃

(
∫ ∞

−∞

dy h2
1hnhm

)

v2
1 +

1

τ

(
∫ ∞

−∞

dy h′
nh′

m

)

∂µỸ ∂µỸ (A.5)

K̃µ
nm = − 1√

τ

(
∫ ∞

−∞

dy h′
nhm

)

∂µỸ (A.6)

˜̃J (2)
nm = −α

(
∫ ∞

−∞

dy ΦKh1fnhm

)

v1 (A.7)
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B Calculation of the effective couplings

The technique to derive the effective couplings of our effective action (4.1) is conceptually

quite simple (although in practice its implementation is not always entirely straightfor-

ward). The difficult part is, of course, to calculate the sums over the heavy modes appear-

ing in the expressions for the couplings. The basic idea is to cancel the 1/m2
n factor entering

the expressions under the sum by extracting a factor m2
n from one of the integrals under

the sum (when calculating higher order corrections, one needs to extract the necessary

number of such factors). This can be achieved with the help of the following identity

F ′(y)∂r =
1

2
[F (y),Ω2] − 1

2
F ′′(y) . (B.1)

Here F (y) is an arbitrary function and Ω2 = −∂2
y + U(y) is a self-adjoint Schrödinger

operator with some potential U(y). We will use the Schrödinger operators determining the

spectrum of our theory, that is either Ω2
ffn = m2

nfn or Ω2
hhn = m̃2

nhn. Eliminating the

dependence on the masses allows us to use the completeness of the wavefunctions to perform

the sum over the modes and end up with closed-form expressions for the effective couplings.

As a concrete application of this method, let us present the calculation of the quartic

self-interaction for v1:

λ4 ≡ λ̃

4

∫ ∞

−∞

dy h4
1 −

1

2τ2

∑

n 6=0

∫

1

m2
n

(
∫ ∞

−∞

dy ΦKh2
1fn

)2

. (B.2)

We begin by deriving the equality
∫ ∞

−∞

dy ΦKh2
1fn =

m2
nv

2a(1 + σ)

∫ ∞

−∞

dy f0Ffn , where F ′ =
h2

1

f0
. (B.3)

To start, we rewrite the integral as follows:
∫ ∞

−∞

dy ΦKh2
1fn =

∫ ∞

−∞

dy ΦKf0
h2

1

f0
fn = − v

2a

∫ ∞

−∞

dy f ′
0

h2
1

f0
fn = − v

2a

∫ ∞

−∞

dy fnF ′f ′
0 ,

where we have set F ′ = h2
1/f0. Using the identity (B.1) we obtain:

∫ ∞

−∞

dy ΦKh2
1fn = − v

2a

∫ ∞

−∞

dy fnF ′f ′
0 = − v

4a

∫ ∞

−∞

dy fn

{

[F,Ω2
f ] − F ′′

}

f0

= − v

4a

{

−m2
n

∫ ∞

−∞

dy fnFf0 −
2a

v
(1 − σ)

∫ ∞

−∞

dy ΦKfnF ′f0

}

= m2
n

v

4a

∫ ∞

−∞

dy fnFf0 +
1

2
(1 − σ)

∫ ∞

−∞

dy ΦKh2
1fn ,

where we have used F ′′ = (2a/v)(1 − σ)ΦKF ′. This yields the identity (B.3).

We can now perform the sum over modes in the expression for the effective coupling λ4,

eq. (B.2). Indeed, using (B.3) we have:

α2

2

∑

n 6=0

∫

1

m2
n

(
∫ ∞

−∞

dyΦKh2
1fn

)2

=
α2

2

∑

n 6=0

∫

1

m2
n

(
∫ ∞

−∞

dy ΦKh2
1fn

)(

v

2a(σ + 1)
m2

n

∫ ∞

−∞

dy f0Ffn

)
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=
α2v

4a(σ + 1)

∫ ∞

−∞

dy

∫ ∞

−∞

dỹ ΦK(y)h2
1(y)f0(ỹ)F (ỹ)

∑

n 6=0

∫

fn(y)fn(ỹ)

Using the completeness relation:

∑

n 6=0

∫

fn(y)fn(ỹ) = δ(y − ỹ) − f0(y)f0(ỹ)

we obtain:
α2

2

∑

n 6=0

∫

1

m2
n

(
∫ ∞

−∞

dy ΦKh2
1fn

)2

=
α2v

4a(σ + 1)

∫ ∞

−∞

dy ΦKh2
1f0F .

(Given that ΦK is odd and h1 even, the zero-mode term does not contribute ). Upon using

α = λσ(σ + 1)/2 and the identity

ΦKh2
1f0 = − v

2a(σ + 1)
(h2

1f0)
′ (B.4)

this can be further rewritten as:

α2

2

∑

n 6=0

∫

1

m2
n

(
∫ ∞

−∞

dy ΦKh2
1fn

)2

= − α2v2

8a(σ + 1)2

∫ ∞

−∞

dy (h2
1f0)

′F = λ
σ2

16

∫ ∞

−∞

dy h4
1 .

Inserting this result into eq. (B.2) we obtain, as advertised:

λ4 =

(

λ̃

4
− λ

σ2

16

)

∫ ∞

−∞

dy h4
1 .

As all the other couplings present in our effective action can be calculated in a similar

manner, we will skip the details of their calculation and will instead present the summary

of the results together with the equalities of the type of (B.3) which we have used.

The identity:
∫ ∞

−∞

dy Φ′
Kf ′

n =
1

2
m2

n

∫ ∞

−∞

dy y Φ′
Kfn , (B.5)

(which was used in [35] in the derivation of the perturbation theory for the one-dimensional

kink) allows us to derive:

∑

n 6=0

∫

1

m2
n

(
∫ ∞

−∞

dy Φ′
Kf ′

n

)2

= −1

2

∫ ∞

−∞

dy y Φ′
KΦ′′

K =
1

4
τ (B.6)

∑

n 6=0

∫

1

m4
n

(
∫ ∞

−∞

dy Φ′
Kf ′

n

)2

=

∫ ∞

−∞

dy y2Φ′2
K =

τ

48a2

(

π2 − 6
)

(B.7)

∑

n 6=0

∫

1

m2
n

(
∫ ∞

−∞

dy Φ′
Kf ′

n

)(
∫ ∞

−∞

dy ΦKh2
1fn

)

=
σv

2(1 + σ)(1 + 2σ)
(B.8)

Combining (B.3) with (B.5) yields:

∑

n 6=0

∫

1

m4
n

(
∫ ∞

−∞

dy Φ′
Kf ′

n

)(
∫ ∞

−∞

dy ΦKh2
1fn

)

=
v2

4σ(1 + σ)a2
I(σ) (B.9)
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where

I(σ) ≡ σ

(
∫ ∞

−∞

dy
1

cosh2σ(x)

)−1 ∫ ∞

−∞

dy
y

cosh4(y)

∫ y

0
dy′ [cosh(y′)]2−2σ . (B.10)

Using twice the identity (B.3) we obtain:

∑

n 6=0

∫

1

m4
n

(
∫ ∞

−∞

dy ΦKh2
1fn

)2

=
1

a
J(σ) (B.11)

with

J(σ) ≡ σ2

2

(
∫ ∞

−∞

dy

cosh2σ(y)

)−2 ∫ ∞

−∞

dy

cosh4(y)

(
∫ y

0
dy′ [cosh(ay′)]2−2σ

)2

.

Finally, the identity:
∫ ∞

−∞

dy h1h
′
n =

1

2

(

m̃2
n − m̃2

1

)

∫ ∞

−∞

dy y h1hn (B.12)

allows us to derive:

∑

n 6=1

∫

1

m̃2
n

(
∫ ∞

−∞

dy h1h
′
n

)2

≈ 1

4
− m̃2

1

2

∫ ∞

−∞

dy y2h2
1 ≈ 1

4
(B.13)
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